The cell cycle dependent transcriptome and proteome
The cell cycle is an ordered and tightly regulated series of events over which the cell grows and divides into two daughter cells. It consists of four stages, during which the cell increases in size (G1), replicates its genome (S), increases further in size and prepares for mitosis (G2), and finally goes through mitosis as well as cytokinesis (M). Depending on external and internal signals, the cell may also exit the replicative cell cycle from G1 and enter a non-replicative resting state (G0). Dysregulation of the cell cycle is known to have devastating consequences, such as uncontrolled cell proliferation, genomic instability (Malumbres M et al. (2009)), and cancer (Massagué J. (2004); Hartwell LH et al. (1994)). Therefore, the cell cycle needs to be tightly controlled, while at the same time remaining responsive to various intracellular and extracellular signals (Barnum KJ et al. (2014)). The cell cycle control system involves an intricate network of proteins that are tightly regulated by mechanisms such as transcriptional regulation (Weinberg RA. (1995)), protein post-translational modifications (PTMs) (Morgan DO. (1995)), and protein degradation (Teixeira LK et al. (2013); King RW et al. (1996)).
In asynchronous cell cultures, the cell cycle is a fundamental source of cell-to-cell variation in both transcript and protein abundances (Cho RJ et al. (2001); Whitfield ML et al. (2002); Boström J et al. (2017); Lane KR et al. (2013); Ohta S et al. (2010); Ly T et al. (2014); Pagliuca FW et al. (2011); Ly T et al. (2015)). The subcellular section provides a resource to explore protein heterogeneity at the single cell level in unperturbed log-phase growing cells. Among the 13105 genes in the subcellular section, (3185) show cell-to-cell variation in terms of expression level and/or spatial distribution of the encoded protein(s) in at least one cell line in the regular ICC-IF pipeline. For a subset of these genes, the temporal protein and RNA expression patterns have been further characterized in individual cells using the Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) U2OS cell line (Mahdessian D et al. (2021)). In this study, 308 of the genes now present in the Subcellular section were found to correlate with progression through interphase. In addition, there is currently 357 genes encoding proteins that are defined as cell cycle dependent (CCD) by their localization to mitotic structures, giving a total of 639 CCD proteins. Single cell sequencing of FUCCI U2OS cells sorted according to cell cycle phase have also identified 529 genes that encode CCD transcripts. This spatially resolved proteomic map of the cell cycle has been integrated into the subcellular section in order to provide a resource for molecular insights into this fundamentalprocess.
Single-cell variation in the Subcellular Section
Genetically identical cells may exhibit differences in their patterns of gene- and protein expression. This phenomenon is often referred to as cell-to-cell variation or single-cell variation (SCV). While it is hypothesized that there is an underlying functional importance to this variability, the scale and significance of variations at the single-cell level remains poorly understood (Dueck H et al. (2016)). Environmental changes, DNA damage, cell cycle progression, and stochasticity are examples of factors that may cause changes in RNA and protein expression within isogenic cell populations, and thus serve as sources of single-cell heterogeneity (Snijder B et al. (2011)). This may create different phenotypic characteristics within individual cells and provide them with a molecular and phenotypic fingerprint. Identification of all human proteins that display single-cell variation lays a foundation for characterizing the driving forces of single-cell heterogeneity, and for understanding the functional consequences.
In an immunofluorescence (IF) image, single-cell protein variations can be observed as differences in the staining intensity or spatial distribution between cells, as exemplified in Figure 1. Interestingly, as many as 3185 of all human proteins localized in the subcellular section show single-cell variations (Thul PJ et al. (2017)). Of these, 3071 proteins show variations in expression level (staining intensity), 200 proteins show variations in spatial distribution, and 86 proteins show both types of variation.
GTPBP8 - U2OS
CLCN6 - U2OS
INCENP - MCF-7
RACGAP1 - U2OS
RRM2 - U2OS
KIF20A - U2OS
DUSP18 - A-431
DUSP19 - SK-MEL-30
CCNB1 - U2OS
Figure 1. Examples of proteins showing single-cell variation. GTPBP8 is a GTP binding protein (detected in U2OS cells). CLCN6 is a chloride transport protein (detected in U2OS cells). INCENP is a component of the chromosomal passenger complex (CPC) that is a key regulator of mitosis (detected in MCF7 cells). RACGAP1 has a key role in controlling cell growth and cell division (detected in U2OS cells). RRM2 provides precursors necessary for DNA synthesis (detected in U2OS cells). KIF20A is a mitotic kinesin required for cytokinesis (detected in U2OS cells). DUSP18 and DUSP19 are phosphatases (detected in A-431 and SK-MEL-30 cells, respectively). CCNB1 is a key regulator of the cell cycle at the G2/M transition for cell division (detected in U2OS cells). The target protein is shown in green, microtubules in red, and the nucleus in blue.
Single-cell variation is most commonly observed for proteins in the nucleoplasm, cytosol, vesicles, nucleoli and mitochondria (Figure 2). Gene Ontology (GO)-based enrichment analysis of genes encoding proteins with single-cell variation at protein level reveals an enrichment of GO terms describing numerous biological processes, including DNA repair, translation, apoptosis, transcription, cell cycle progression and metabolism (Figure 3). The enriched terms for the GO domain Molecular Function describes many different enzymatic activities as well as binding to DNA, RNA and chromatin.
Figure 2. Localizations of proteins showing single-cell variations to the different organelles, grouped by meta-compartments.
Figure 3. Gene Ontology-based enrichment analysis for genes encoding proteins with single-cell variations, showing the significantly enriched terms for the GO domain Biological Process. Each bar is clickable and gives a search result of proteins that belong to the selected category.
Figure 4. Gene Ontology-based enrichment analysis for genes encoding proteins with single-cell variations, showing the significantly enriched terms for the GO domain Molecular Function. Each bar is clickable and gives a search result of proteins that belong to the selected category.
Interphase proteogenomics in single cells
Previous studies of transcript and protein abundance in different phases of the human cell cycle have revealed variations in the expression of 400-1,200 genes (Cho RJ et al. (2001); Whitfield ML et al. (2002); Boström J et al. (2017)) and 300-700 proteins (Lane KR et al. (2013); Ohta S et al. (2010); Ly T et al. (2014); Pagliuca FW et al. (2011); Ly T et al. (2015)). However, cell synchronization is known to alter gene expression (Cooper S et al. (2007)), cell morphology and metabolism (Davis PK et al. (2001)), and precludes the discovery of expression changes within cell cycle phases. The use of single-cell RNA sequencing has allowed the analysis of transcriptional changes without the need for synchronization and has enabled the discovery of additional cell cycle regulated genes (Domenighetti G et al. (1988); Scialdone A et al. (2015)). However, studies of cell cycle dependent (CCD) variations in protein expression at single-cell level have been lacking due to technological limitations.
The HPA subcellular section now includes a targeted single-cell transcriptomic analysis, as well as proteomic imaging (i.e., imaging proteogenomics, Figure 5) of 1119 variable proteins that are expressed in FUCCI U2OS cells (Sakaue-Sawano A et al. (2008); Mahdessian D et al. (2021)). This cell line expresses a pair of fluorescently tagged marker proteins, Cdt1 tagged with red fluorescent protein (RFP) and Geminin tagged with green fluorescent protein (GFP), which enable visualization of interphase progression in individual cells. The intensities of the RFP- and GFP-tagged cell cycle markers can be used to create a linear representation of cell cycle pseudo time, enabling protein and RNA expression in individual cells to be plotted along an axis representing progression through interphase.
Figure 5. Schematic overview of the single-cell imaging proteogenomic workflow. U2OS FUCCI cells express two fluorescently tagged cell cycle markers, CDT1 during G1 phase (red, RFP-tagged) and Geminin during S and G2 phases (green, GFP-tagged); these markers are co-expressed during the G1-S transition (yellow). By fitting a polar model to the red and green fluorescence intensities, a linear representation of cell cycle pseudotime is obtained. Independent measurements of RNA and protein expression are compared after pseudotime alignment of individual cells.
The single-cell RNA-sequencing data from the FUCCI U2OS cells enables analysis of RNA abundance in relation to cell cycle progression. This analysis has led to the identification of 529 genes that show variance in RNA expression levels that correlate to interphase cell cycle progression.
In the single-cell proteomic imaging analysis, 308 proteins display variation in protein expression levels that temporally correlate with interphase progression through G1, S and G2. These cell cycle dependent (CCD) proteins include known cell cycle regulators, such as the cyclin CCNB1 and ANLN, which is required for cytokinesis, but also novel CCD proteins, such as DUSP18 (Figure 6). However, most proteins (811) show cell-to-cell variations that are largely unexplained by cell cycle progression (non-CCD). This opens up intriguing avenues for further exploration of the stochasticity or deterministic factors that govern these variations, as well as the role of spatiotemporal proteome dynamics for regulating other cellular states and functions.
CCNB1 - Protein expression
CCNB1 - Protein expression
CCNB1 - Rna expression
ANLN - Protein expression
ANLN - Protein expression
ANLN - Rna expression
DUSP18 - Protein expression
DUSP18 - Protein expression
DUSP18 - Rna expression
Figure 6. Examples of temporal expression profiles for single cell protein (blue) and RNA (orange) expression. The boxplot shows a mock-up bulk proteomic experiment.
Proteins in mitotic structures
In addition to proteins that show single-cell variations due to progression through interphase, there are 357 genes in the Subcellular section encoding proteins that are defined as cell cycle dependent (CCD) as they localize to mitotic structures, including mitotic chromosomes (74), mitotic spindle (93), kinetochores (6), cytokinetic bridge (158), midbody (55), midbody ring (26) and cleavage furrow (1). Examples of these can be seen in Figure 7.
KIF20A - U2OS
TAF1D - U2OS
TACC3 - U2OS
KIF11 - U2OS
CKAP2L - A-431
BIRC5 - U2OS
MICAL3 - SiHa
CTTNBP2 - HeLa
SGO1 - U2OS
Figure 7. Example images of proteins localized to mitotic substructures: KIF20A to cleavage furrow, TAF1D, TACC3, KIF11 and CKAP2L to mitotic spindle, BIRC5 to cytokinetic bridge, MICAL3 and CTTNBP2 to midbody ring, and SGO1 to kinetochores.
Localizations of the cell cycle dependent proteome
In total, there are 639 genes encoding variable proteins that have been identified as cell cycle dependent (CCD) and 811 genes encoding variable proteins that have been identified as cell cycle independent (non-CCD) in the Subcellular Section. The high resolution of the HPA Subcellular Section dataset allows us to look at the subcellular localizations of proteins showing CCD and non-CCD variability in protein expression (Figure 8). Larger fractions of the CCD proteins are found in mitotic structures, while larger fractions of the non-CCD variable proteins localize to e.g. the cytosol, mitochondria and plasma membrane. Almost half of the CCD variable proteins reside in the nuclear meta compartment, including the nucleus, nuclear speckles, nuclear bodies, and nucleoli. This is in agreement with one of the main functions of the nucleus in replication and separation of DNA during the cell cycle.
Figure 8. Bar plot showing the subcellular localizations enriched for CCD proteins (blue) and non-CCD proteins (red) relative to the proteome mapped in the HPA.
Temporal delay between RNA and protein
Previous studies have shown that many RNA transcripts peak in expression in the G1 phase, which is also the longest period of the cell cycle (Boström J et al. (2017); Grant GD et al. (2013)). Among the 529 genes for which RNA expression is correlated to the cell cycle in FUCCI U2OS cells, (248) peak in G1. However, most proteins that show cell cycle dependent expression (238) peak towards the end of the cell cycle, corresponding to late S and G2 (Figure 9). This seems to reflect a temporal delay between RNA and protein expression Mahdessian D et al. (2021).
Figure 9. The number of proteins peaking in each phase (interactive blue text) and the number of transcripts peaking in each phase (interactive orange text).
Interestingly, only 85 of the genes encoding proteins identified as CCD proteins in interphase also display cell cycle dependent variations in RNA expression in interphase, while a large majority of the CCD proteins in interphase have non-CCD transcripts (n=366) (Figure 10). Thus, their variation in protein expression thus cannot be attributed to transcript cycling. The small overlap of CCD proteins and transcripts is corroborated by external RNA datasets (Grant GD et al. (2013); Semple JW et al. (2006)) and indicates that the temporal dynamics of proteome regulation may be largely maintained at a post-transcriptional level.
Figure 10. The numbers of cell cycle dependent proteins, transcripts, displayed as an interactive bar plot on the left. On the right, we highlight the overlap of these categories as transcriptionally regulated and non-transcriptionally regulated cell cycle dependent proteins as an interactive bar plot.
Functional roles of novel cell cycle proteins in proliferation
Analysis of RNA expression of the CCD proteins across normal human tissues and tumor tissues, reveals a significantly higher expression in proliferative tissues compared to non-proliferative tissues (Figure 11). This indicates that, while the majority of the CCD proteins are not accompanied by cycling transcripts, overall transcription levels of these proteins could be important for cell proliferation.
Figure 11. A) Hierarchical clustering of bulk transcript expression (log-transformed TPM values) for CCD proteins derived from RNA sequencing of various normal and cancer tissue types. The expression levels of the proliferation markers MCM6, CDK1, PCNA, MCM2 and KI67 are highlighted on top as a general measure of the proliferative activity of the tissues. Four clusters are identified: (1) contains normal tissues with low proliferative activity, (2) contains cerebral tissues with testis, (3) contains mostly normal tissues with midrange expression level of the proliferation markers and (4) contains tissues with high expression of the proliferation markers, including tumors. B) Box plots of the average transcript level for known and novel CCD proteins, respectively, for the four different clusters from A.
To confirm a functional role in proliferation, we performed siRNA-mediated gene silencing for a few selected novel CCD proteins. Silencing of DUSP18, KLHL38, CD2BP2 and SOX12 decreased cell proliferation rate relative to the control, whereas silencing of JPH3 increased cellular proliferation (Figure 12).
Figure 12. Silencing of CCD proteins DUSP18, CD2BP2, KLHL38 and JPH3. Immunofluorescence images of the control and siRNA samples, where the staining intensity is shown as a gradient from low intensity (blue) to high intensity (white). Bar plots show the differences in cell counts for control (Ctrl) and siRNA samples, and boxplots show the significant decrease of the measured intensity (too few cells were observed in DUSP18 and KLH38 siRNA samples to make this comparison).
Cellular proliferation also plays an important role in tumorigenesis. The pathology section of the HPA is a comprehensive resource for studying the correlation between RNA expression for human protein-coding genes in cancer tissues and the clinical outcomes for almost 8000 cancer patients. Prognostic associations are significantly overrepresented among the genes encoding CCD proteins (424, 70%), corroborating the functional role of CCD proteins in proliferation. The novel CCD proteins, such as FAM50B and CD2BP2 (Figure 13), include both inhibitors and enhancers of proliferation, with potential anti-oncogenic or oncogenic functions. Thus, some of the novel CCD proteins may have potential to be novel diagnostic or therapeutic targets for human cancers.
Figure 13. Kaplan-Meier plots showing the correlation between survival and gene expression (FPKM) for CD2BP2 (top panel) and FAM50B (bottom). Higher expression of FAM50B was associated with longer survival (favorable) in renal cancer, and higher expression of CD2BP2 was associated with shorter survival (unfavorable) in liver cancer. Immunohistochemistry images (target protein: brown, nuclei: blue) show lower expression of FAM50B in renal cancer than normal kidney and higher expression of CD2BP2 in liver cancer than normal liver.
Relevant links and publications
Uhlen M et al., A proposal for validation of antibodies. Nat Methods. (2016)
PubMed: 27595404 DOI: 10.1038/nmeth.3995
Stadler C et al., Systematic validation of antibody binding and protein subcellular localization using siRNA and confocal microscopy. J Proteomics. (2012)
PubMed: 22361696 DOI: 10.1016/j.jprot.2012.01.030
Poser I et al., BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods. (2008)
PubMed: 18391959 DOI: 10.1038/nmeth.1199
Skogs M et al., Antibody Validation in Bioimaging Applications Based on Endogenous Expression of Tagged Proteins. J Proteome Res. (2017)
PubMed: 27723985 DOI: 10.1021/acs.jproteome.6b00821
Parikh K et al., Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature. (2019)
PubMed: 30814735 DOI: 10.1038/s41586-019-0992-y
Wang L et al., Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat Cell Biol. (2020)
PubMed: 31915373 DOI: 10.1038/s41556-019-0446-7
Wang Y et al., Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. J Exp Med. (2020)
PubMed: 31753849 DOI: 10.1084/jem.20191130
Liao J et al., Single-cell RNA sequencing of human kidney. Sci Data. (2020)
PubMed: 31896769 DOI: 10.1038/s41597-019-0351-8
MacParland SA et al., Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun. (2018)
PubMed: 30348985 DOI: 10.1038/s41467-018-06318-7
Vento-Tormo R et al., Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. (2018)
PubMed: 30429548 DOI: 10.1038/s41586-018-0698-6
Chen J et al., PBMC fixation and processing for Chromium single-cell RNA sequencing. J Transl Med. (2018)
PubMed: 30016977 DOI: 10.1186/s12967-018-1578-4
Qadir MMF et al., Single-cell resolution analysis of the human pancreatic ductal progenitor cell niche. Proc Natl Acad Sci U S A. (2020)
PubMed: 32354994 DOI: 10.1073/pnas.1918314117
Solé-Boldo L et al., Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun Biol. (2020)
PubMed: 32327715 DOI: 10.1038/s42003-020-0922-4
Lukassen S et al., SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. (2020)
PubMed: 32246845 DOI: 10.15252/embj.20105114
De Micheli AJ et al., A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations. Skelet Muscle. (2020)
PubMed: 32624006 DOI: 10.1186/s13395-020-00236-3
Hildreth AD et al., Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat Immunol. (2021)
PubMed: 33907320 DOI: 10.1038/s41590-021-00922-4
He S et al., Single-cell transcriptome profiling of an adult human cell atlas of 15 major organs. Genome Biol. (2020)
PubMed: 33287869 DOI: 10.1186/s13059-020-02210-0
Tabula Sapiens Consortium* et al., The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science. (2022)
PubMed: 35549404 DOI: 10.1126/science.abl4896
Menon M et al., Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat Commun. (2019)
PubMed: 31653841 DOI: 10.1038/s41467-019-12780-8
Bhat-Nakshatri P et al., A single-cell atlas of the healthy breast tissues reveals clinically relevant clusters of breast epithelial cells. Cell Rep Med. (2021)
PubMed: 33763657 DOI: 10.1016/j.xcrm.2021.100219
Man L et al., Comparison of Human Antral Follicles of Xenograft versus Ovarian Origin Reveals Disparate Molecular Signatures. Cell Rep. (2020)
PubMed: 32783948 DOI: 10.1016/j.celrep.2020.108027
Guo J et al., The adult human testis transcriptional cell atlas. Cell Res. (2018)
PubMed: 30315278 DOI: 10.1038/s41422-018-0099-2
Wang W et al., Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. Nat Med. (2020)
PubMed: 32929266 DOI: 10.1038/s41591-020-1040-z
Takahashi H et al., 5' end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc. (2012)
PubMed: 22362160 DOI: 10.1038/nprot.2012.005
Lein ES et al., Genome-wide atlas of gene expression in the adult mouse brain. Nature. (2007)
PubMed: 17151600 DOI: 10.1038/nature05453
Kircher M et al., Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. (2012)
PubMed: 22021376 DOI: 10.1093/nar/gkr771
Uhlén M et al., The human secretome. Sci Signal. (2019)
PubMed: 31772123 DOI: 10.1126/scisignal.aaz0274
Uhlen M et al., A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science. (2019)
PubMed: 31857451 DOI: 10.1126/science.aax9198
Zhong W et al., The neuropeptide landscape of human prefrontal cortex. Proc Natl Acad Sci U S A. (2022)
PubMed: 35947618 DOI: 10.1073/pnas.2123146119
Sjöstedt E et al., An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. (2020)
PubMed: 32139519 DOI: 10.1126/science.aay5947
Schubert M et al., Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat Commun. (2018)
PubMed: 29295995 DOI: 10.1038/s41467-017-02391-6
Jiang P et al., Systematic investigation of cytokine signaling activity at the tissue and single-cell levels. Nat Methods. (2021)
PubMed: 34594031 DOI: 10.1038/s41592-021-01274-5
Jin L et al., Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med. (2006)
PubMed: 16998484 DOI: 10.1038/nm1483
Magis AT et al., Untargeted longitudinal analysis of a wellness cohort identifies markers of metastatic cancer years prior to diagnosis. Sci Rep. (2020)
PubMed: 33004987 DOI: 10.1038/s41598-020-73451-z
Santarius T et al., GLO1-A novel amplified gene in human cancer. Genes Chromosomes Cancer. (2010)
PubMed: 20544845 DOI: 10.1002/gcc.20784
Berggrund M et al., Identification of Candidate Plasma Protein Biomarkers for Cervical Cancer Using the Multiplex Proximity Extension Assay. Mol Cell Proteomics. (2019)
PubMed: 30692274 DOI: 10.1074/mcp.RA118.001208
Virgilio L et al., Deregulated expression of TCL1 causes T cell leukemia in mice. Proc Natl Acad Sci U S A. (1998)
PubMed: 9520462 DOI: 10.1073/pnas.95.7.3885
Saberi Hosnijeh F et al., Proteomic markers with prognostic impact on outcome of chronic lymphocytic leukemia patients under chemo-immunotherapy: results from the HOVON 109 study. Exp Hematol. (2020)
PubMed: 32781097 DOI: 10.1016/j.exphem.2020.08.002
Gao L et al., Integrative analysis the characterization of peroxiredoxins in pan-cancer. Cancer Cell Int. (2021)
PubMed: 34246267 DOI: 10.1186/s12935-021-02064-x
Satelli A et al., Galectin-4 functions as a tumor suppressor of human colorectal cancer. Int J Cancer. (2011)
PubMed: 21064109 DOI: 10.1002/ijc.25750
Harlid S et al., A two-tiered targeted proteomics approach to identify pre-diagnostic biomarkers of colorectal cancer risk. Sci Rep. (2021)
PubMed: 33664295 DOI: 10.1038/s41598-021-83968-6
Sun X et al., Prospective Proteomic Study Identifies Potential Circulating Protein Biomarkers for Colorectal Cancer Risk. Cancers (Basel). (2022)
PubMed: 35805033 DOI: 10.3390/cancers14133261
Bhardwaj M et al., Comparison of Proteomic Technologies for Blood-Based Detection of Colorectal Cancer. Int J Mol Sci. (2021)
PubMed: 33530402 DOI: 10.3390/ijms22031189
Chen H et al., Head-to-Head Comparison and Evaluation of 92 Plasma Protein Biomarkers for Early Detection of Colorectal Cancer in a True Screening Setting. Clin Cancer Res. (2015)
PubMed: 26015516 DOI: 10.1158/1078-0432.CCR-14-3051
Thorsen SB et al., Detection of serological biomarkers by proximity extension assay for detection of colorectal neoplasias in symptomatic individuals. J Transl Med. (2013)
PubMed: 24107468 DOI: 10.1186/1479-5876-11-253
Mahboob S et al., A novel multiplexed immunoassay identifies CEA, IL-8 and prolactin as prospective markers for Dukes' stages A-D colorectal cancers. Clin Proteomics. (2015)
PubMed: 25987887 DOI: 10.1186/s12014-015-9081-x
He W et al., Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation. Autophagy. (2012)
PubMed: 23051914 DOI: 10.4161/auto.22145
Enroth S et al., A two-step strategy for identification of plasma protein biomarkers for endometrial and ovarian cancer. Clin Proteomics. (2018)
PubMed: 30519148 DOI: 10.1186/s12014-018-9216-y
Jung CS et al., Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain. (2007)
PubMed: 17998256 DOI: 10.1093/brain/awm263
Jaworski DM et al., BEHAB (brain enriched hyaluronan binding) is expressed in surgical samples of glioma and in intracranial grafts of invasive glioma cell lines. Cancer Res. (1996)
PubMed: 8625302
Zhang X et al., CEACAM5 stimulates the progression of non-small-cell lung cancer by promoting cell proliferation and migration. J Int Med Res. (2020)
PubMed: 32993395 DOI: 10.1177/0300060520959478
Xu F et al., A Linear Discriminant Analysis Model Based on the Changes of 7 Proteins in Plasma Predicts Response to Anlotinib Therapy in Advanced Non-Small Cell Lung Cancer Patients. Front Oncol. (2021)
PubMed: 35070967 DOI: 10.3389/fonc.2021.756902
Dagnino S et al., Prospective Identification of Elevated Circulating CDCP1 in Patients Years before Onset of Lung Cancer. Cancer Res. (2021)
PubMed: 33574093 DOI: 10.1158/0008-5472.CAN-20-3454
Wik L et al., Proximity Extension Assay in Combination with Next-Generation Sequencing for High-throughput Proteome-wide Analysis. Mol Cell Proteomics. (2021)
PubMed: 34715355 DOI: 10.1016/j.mcpro.2021.100168
Zeiler M et al., A Protein Epitope Signature Tag (PrEST) library allows SILAC-based absolute quantification and multiplexed determination of protein copy numbers in cell lines. Mol Cell Proteomics. (2012)
PubMed: 21964433 DOI: 10.1074/mcp.O111.009613
Peng Y et al., Identification of key biomarkers associated with cell adhesion in multiple myeloma by integrated bioinformatics analysis. Cancer Cell Int. (2020)
PubMed: 32581652 DOI: 10.1186/s12935-020-01355-z
Gyllensten U et al., Next Generation Plasma Proteomics Identifies High-Precision Biomarker Candidates for Ovarian Cancer. Cancers (Basel). (2022)
PubMed: 35406529 DOI: 10.3390/cancers14071757
Enroth S et al., High throughput proteomics identifies a high-accuracy 11 plasma protein biomarker signature for ovarian cancer. Commun Biol. (2019)
PubMed: 31240259 DOI: 10.1038/s42003-019-0464-9
Wang Z et al., DNER promotes epithelial-mesenchymal transition and prevents chemosensitivity through the Wnt/β-catenin pathway in breast cancer. Cell Death Dis. (2020)
PubMed: 32811806 DOI: 10.1038/s41419-020-02903-1
Liu S et al., Discovery of CASP8 as a potential biomarker for high-risk prostate cancer through a high-multiplex immunoassay. Sci Rep. (2021)
PubMed: 33828176 DOI: 10.1038/s41598-021-87155-5
Robinson JL et al., An atlas of human metabolism. Sci Signal. (2020)
PubMed: 32209698 DOI: 10.1126/scisignal.aaz1482
Uhlen M et al., A pathology atlas of the human cancer transcriptome. Science. (2017)
PubMed: 28818916 DOI: 10.1126/science.aan2507
Hikmet F et al., The protein expression profile of ACE2 in human tissues. Mol Syst Biol. (2020)
PubMed: 32715618 DOI: 10.15252/msb.20209610
Gordon DE et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. (2020)
PubMed: 32353859 DOI: 10.1038/s41586-020-2286-9
Karlsson M et al., A single-cell type transcriptomics map of human tissues. Sci Adv. (2021)
PubMed: 34321199 DOI: 10.1126/sciadv.abh2169
Jumper J et al., Highly accurate protein structure prediction with AlphaFold. Nature. (2021)
PubMed: 34265844 DOI: 10.1038/s41586-021-03819-2
Varadi M et al., AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. (2022)
PubMed: 34791371 DOI: 10.1093/nar/gkab1061
Berman HM et al., The Protein Data Bank. Nucleic Acids Res. (2000)
PubMed: 10592235 DOI: 10.1093/nar/28.1.235
Pollard TD et al., Actin, a central player in cell shape and movement. Science. (2009)
PubMed: 19965462 DOI: 10.1126/science.1175862
Mitchison TJ et al., Actin-based cell motility and cell locomotion. Cell. (1996)
PubMed: 8608590
Pollard TD et al., Molecular Mechanism of Cytokinesis. Annu Rev Biochem. (2019)
PubMed: 30649923 DOI: 10.1146/annurev-biochem-062917-012530
dos Remedios CG et al., Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev. (2003)
PubMed: 12663865 DOI: 10.1152/physrev.00026.2002
Campellone KG et al., A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol. (2010)
PubMed: 20237478 DOI: 10.1038/nrm2867
Rottner K et al., Actin assembly mechanisms at a glance. J Cell Sci. (2017)
PubMed: 29032357 DOI: 10.1242/jcs.206433
Bird RP., Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett. (1987)
PubMed: 3677050 DOI: 10.1016/0304-3835(87)90157-1
HUXLEY AF et al., Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. (1954)
PubMed: 13165697
HUXLEY H et al., Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. (1954)
PubMed: 13165698
Svitkina T., The Actin Cytoskeleton and Actin-Based Motility. Cold Spring Harb Perspect Biol. (2018)
PubMed: 29295889 DOI: 10.1101/cshperspect.a018267
Malumbres M et al., Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. (2009)
PubMed: 19238148 DOI: 10.1038/nrc2602
Massagué J., G1 cell-cycle control and cancer. Nature. (2004)
PubMed: 15549091 DOI: 10.1038/nature03094
Hartwell LH et al., Cell cycle control and cancer. Science. (1994)
PubMed: 7997877 DOI: 10.1126/science.7997877
Barnum KJ et al., Cell cycle regulation by checkpoints. Methods Mol Biol. (2014)
PubMed: 24906307 DOI: 10.1007/978-1-4939-0888-2_2
Weinberg RA., The retinoblastoma protein and cell cycle control. Cell. (1995)
PubMed: 7736585 DOI: 10.1016/0092-8674(95)90385-2
Morgan DO., Principles of CDK regulation. Nature. (1995)
PubMed: 7877684 DOI: 10.1038/374131a0
Teixeira LK et al., Ubiquitin ligases and cell cycle control. Annu Rev Biochem. (2013)
PubMed: 23495935 DOI: 10.1146/annurev-biochem-060410-105307
King RW et al., How proteolysis drives the cell cycle. Science. (1996)
PubMed: 8939846 DOI: 10.1126/science.274.5293.1652
Cho RJ et al., Transcriptional regulation and function during the human cell cycle. Nat Genet. (2001)
PubMed: 11137997 DOI: 10.1038/83751
Whitfield ML et al., Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell. (2002)
PubMed: 12058064 DOI: 10.1091/mbc.02-02-0030.
Boström J et al., Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells. PLoS One. (2017)
PubMed: 29228002 DOI: 10.1371/journal.pone.0188772
Lane KR et al., Cell cycle-regulated protein abundance changes in synchronously proliferating HeLa cells include regulation of pre-mRNA splicing proteins. PLoS One. (2013)
PubMed: 23520512 DOI: 10.1371/journal.pone.0058456
Ohta S et al., The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell. (2010)
PubMed: 20813266 DOI: 10.1016/j.cell.2010.07.047
Ly T et al., A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells. Elife. (2014)
PubMed: 24596151 DOI: 10.7554/eLife.01630
Pagliuca FW et al., Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery. Mol Cell. (2011)
PubMed: 21816347 DOI: 10.1016/j.molcel.2011.05.031
Ly T et al., Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells. Elife. (2015)
PubMed: 25555159 DOI: 10.7554/eLife.04534
Mahdessian D et al., Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. Nature. (2021)
PubMed: 33627808 DOI: 10.1038/s41586-021-03232-9
Dueck H et al., Variation is function: Are single cell differences functionally important?: Testing the hypothesis that single cell variation is required for aggregate function. Bioessays. (2016)
PubMed: 26625861 DOI: 10.1002/bies.201500124
Snijder B et al., Origins of regulated cell-to-cell variability. Nat Rev Mol Cell Biol. (2011)
PubMed: 21224886 DOI: 10.1038/nrm3044
Thul PJ et al., A subcellular map of the human proteome. Science. (2017)
PubMed: 28495876 DOI: 10.1126/science.aal3321
Cooper S et al., Membrane-elution analysis of content of cyclins A, B1, and E during the unperturbed mammalian cell cycle. Cell Div. (2007)
PubMed: 17892542 DOI: 10.1186/1747-1028-2-28
Davis PK et al., Biological methods for cell-cycle synchronization of mammalian cells. Biotechniques. (2001)
PubMed: 11414226 DOI: 10.2144/01306rv01
Domenighetti G et al., Effect of information campaign by the mass media on hysterectomy rates. Lancet. (1988)
PubMed: 2904581 DOI: 10.1016/s0140-6736(88)90943-9
Scialdone A et al., Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods. (2015)
PubMed: 26142758 DOI: 10.1016/j.ymeth.2015.06.021
Sakaue-Sawano A et al., Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. (2008)
PubMed: 18267078 DOI: 10.1016/j.cell.2007.12.033
Grant GD et al., Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Mol Biol Cell. (2013)
PubMed: 24109597 DOI: 10.1091/mbc.E13-05-0264
Semple JW et al., An essential role for Orc6 in DNA replication through maintenance of pre-replicative complexes. EMBO J. (2006)
PubMed: 17053779 DOI: 10.1038/sj.emboj.7601391